Current Thinking on Blood Quality

    1. The red blood cell storage lesion: the end of the beginning. Simone A Glynn, Harvey G Klein, Paul M Ness. Transfusion. PMID: 27080455.
    2. Established and theoretical factors to consider in assessing the red cell storage lesion. James C Zimring. Blood. 2015.
    3. Oxidative modifications of glyceraldehyde 3-phosphate dehydrogenase regulate metabolic reprogramming of stored red blood cells. Reisz JA, Wither MJ, Dzieciatkowska M, Nemkov T, Issaian A, Yoshida T, Dunham AJ, Hill RC, Hansen KC, D’Alessandro A. Blood.  2016 Sep 22; 128(12):e32-42.
    4. Heterogeneity in blood oxygen saturation as an underappreciated driver of variance in red blood cell quality. Yoshida T, Blair A, Keegan P, Walmsley J. Transfusion. 2016 October; 56(S4):61 A.  [Meeting Abstract]

Pathogen Inactivation

    1. Improvement of red cell quality upon pathogen inactivation of whole blood using riboflavin/UV light by deoxygenation. Schubert P, Culibrk C, Serrano K, Levin E, Chen Z, et al. Transfusion.  2016 September; 56(S4):57A.  [Meeting Abstract]

Red Blood Cell Quality and Anaerobic Storage

    1. Enhancing uniformity and overall quality of red cell concentrate with anaerobic storage. Yoshida T, Blair A, D’Alessandro A, Nemkov T, Dioguardi M, Silliman CC, Dunham A. Blood Tranfusion. 2017; 15:172-81.
    2. Anaerobic storage condition enhances GSH levels while maintaining pentose phosphate pathway activity. D’Alessandro A, Nemkov T, Blair A, Dunham A, Silliman CC, et al. Transfusion. 2016 October; 56(S4):51A.  [Meeting Abstract]
    3. Anaerobic conditions reduce deterioration of rheological properties of stored red blood cells. Piety NZ, Stutz J, Yilmaz HD, Xia H, Yoshida T, et al. Transfusion. 2016 October; 56(S4):24A.  [Meeting Abstract]
    4. C02 – dependent metabolic modulation in red blood cells stored under anaerobic conditions. Dumont LJ, D’Alessandro A, Szczepiorkowski ZM, Yoshida T. Transfusion.  2016; 56(2):392-403. PMCID: PMC4752401
    5. Red blood cell metabolic responses during blood bank storage under mild and acute hypoxia. D’Alessandro A, Travis N, Hill RC.  Vox Sanguinis.  2016 January; 111(S1):7-305.
    6. Deterioration of red blood cell mechanical properties is reduced in anaerobic storage. Burns JM, YoshidaT, Dumont LJ, Yang X, Piety NZ, et al.  Blood transfusion = Trasfusione del sangue.  2016; 14(1):80-8.PMCID:  PMC4731343
    7. Comparison of Cytokine, Cell-free Hemoglobin, and Isoprostane Accumulations in Packed Red Blood Cells During Novel Anaerobic and Conventional Cold Storage. Van Buskirk C, Karon B, Emery R, Behrens M, Yoshida T. Transfusion.  2014  October; 54S:74A. [Meeting Abstract]
    8. Comparison of microparticles production in packed red blood cells stored under anaerobic and conventional cold storage condition.  Van Buskirk C, Tarara J, Jy W, Yoshida T.  Vox Sanguinis.  2013; 105(S1):150. [Meeting Abstract]
    9. Reduction of microparticle generation during anaerobic storage of red blood cells.  Yoshida T, Vernucci P, Vassallo RR, Einarson M. Transfusion.  2012 September; 52(s3):83A [Meeting Abstract]
    10. Anaerobic storage improves the mechanical properties of stored red blood cells. Burns J, Yang X, Yoshida T, Dumont L, Shevkoplyas S. Transfusion.  2012; 52:83A. [Meeting Abstract]
    11. Randomized cross-over in vitro and in vivo evaluation of a prototype anaerobic conditioning and storage system vs. standard aerobic storage.  Dumont L, Szczepiorkowski Z, Siegel A, Herchel L, Calcagni K, et al.  Vox Sanguinis.  2012; 103(S1):123.
    12. Reduction of microparticle generation during anaerobic storage of red blood cells.  Yoshida T, Vernucci P, Vassallo R, Einarson M, Nixon J, et al. Transfusion.  2012; 52:83A. [Meeting Abstract]
    13. Performance of anaerobic stored red blood cells prepared using a prototype O2 & CO2 depletion and storage system.  Dumont L, Szczepiorkowski Z, Siegel A, Herchel L, Calcagni K, et al. Transfusion.  2011; 51S:SP89. [Meeting Abstract]
    14. Anaerobic storage of red blood cells. Yoshida T, Shevkoplyas SS.  Blood Transfusion = Trasfusione del sangue.  2010; 8(4):220-36.PMCID:  PMC2957487
    15. CO2 effects during anaerobic storage of RBC.  Dumont L, Baker S, Housman M, Waters S, Herchel L, et al. Transfusion.  2010; 50:9A. [Meeting Abstract]
    16. Extended storage of red blood cells under anaerobic conditions. Yoshida T, AuBuchon JP, Tryzelaar L, Foster KY, Bitensky MW.  Vox sanguinis.  2007; 92(1):22-31.
    17. Anaerobic storage of red blood cells for 9 weeks:  in vivo and in vitro characteristics.  Yoshida T, Lee J, McDonough W, Friedman K, Bitensky M. Transfusion.  1997; 37S(104S). [Meeting Abstract]

Whole Blood and Anaerobic Storage

    1. Evaluation of select red blood cell biochemical and coagulation properties in whole blood stored using a novel anaerobic storage platform. Van Buskirk CM, Thai NB, Emery RL, Cayou JG, Pruthi RK, et al.  Transfusion.  2016 September; 56(S4):54A.  [Meeting Abstract]

Hemanext Device

    1. Hemanext: device and method for establishing and maintaining controlled oxygen environment for storage of red blood cells. Dunham A, Yoshida T, Cordero R, Keegan P, Blair A.  Vox Sanguinis.  2016 September; 111(S1):53.  [Meeting Abstract]

Microfluidics for Blood Characterization

    1. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device. Shevkoplyas SS, Yoshida T, Gifford SC, Bitensky MW.  Lab on a chip.  2006; 6(7):914-20.
    2. Biomimetic autoseparation of leukocytes from whole blood in a microfluidic device. Shevkoplyas SS, Yoshida T, Munn L, Bitensky MW.  Analytical chemistry.  2005; 77(3)933-7.  PMCID:  PMC3022340
    3. Prototype of an in vitro model of the microcirculation. Shevkoplyas SS, Gifford SC, Yoshida T, Bitensky MW.  Microvascular Research.  2003; 65(2):132-6.
    4. Parallel microchannel-based measurements of individual erythrocyte areas and volumes. Gifford SC, Frank MG, Derganc J, Gabel C, Austin RH, et al.  Biophysical Journal.  2003; 84(1):623-33.

Red Blood Cell Storage in Additive Solution

    1. Citrate metabolism in red blood cells stored in additive solution-3. D’Alessandro A, Nemkov T, Yoshida T, Bordbar A, Palsson BO, Hansen KC. Transfusion. 2016. doi:10.1111/trf.13892
    2. Red blood cell storage in SAGM and AS3: a comparison through the membrane two-dimensional electrophoresis proteome. D’Amici GM, Mirasole C, D’Alessandro A, Yoshida T, Dumont LJ, et al.  Blood Transfusion = Trasfusione del sangue.  2012; 10 Suppl 2:s46-54. PMCID:  PMC34118620
    3. Anaerobic storage of red blood cells in a novel additive solution improves in vivo recovery. Dumont LJ, Yoshida T, AuBuchon JP. Transfusion. 2009; 49(3):458-64.  PMCID:  PMC2710818
    4. The effects of additive solution pH and metabolic rejuvenation on anaerobic storage of red cells. Yoshida T, AuBuchon JP, Dumont LJ, Gorham JD, Gifford SC, et al. Transfusion. 2008; 48(10):2096-105.
    5. Effect of oxygen removal on 9-week storage of red blood cells in EAS61 additive solution.  Yoshida T, Bitensky M, Tryzelaar L, Foster K, Pickard C, et al. Transfusion. 2000; 40S:56S. [Meeting Abstract]
    6. 9-week storage of red blood cells in AS3 under oxygen depleted conditions.  Yoshida T, Bitensky M, Pickard C, Herschel L, Roger J, et al. Transfusion.  1999; 39S:109S. [Meeting Abstract]

Further Reading on Red Blood Cell Characterization

    1. Letter by Lin et al regarding article, “Nitric oxide scavenging of red blood cell microparticles and cell-free hemoglobin as a mechanism for the red cell storage lesion.” Lin HW, Rundek T, Yoshida T. Circulation.   2012; 125(7):e384.
    2. A detailed study of time-dependent changes in human red blood cells: from reticulocyte maturation to erythrocyte senescence. Gifford SC, Derganc J, Shevkoplyas SS, Yoshida T, Bitensky MW.  British Journal of Haematology.  2006; 135(3):395-404.
    3. A high-resolution, double-labeling method for the study of in vivo red blood cell aging. Gifford SC, Yoshida T, Shevkoplyas SS, Bitensky MW.  Transfusion.  2006; 46(4):578-88.
    4. A thermodynamic model of hemoglobin suitable for physiological applications. Yoshida T, Dembo M.  The American Journal of Physiology.  1990; 258(3 Pt 1):C563-77.
    5. Toward a comprehensive biochemical model of human erythrocyte: relationship between metabolic and osmotic state of the cell and the state of hemoglobin. Yoshida T, Dembo M.  Progress in Clinical and Biological Research.  1989; 319:179-93; discussion 194-6.